Shifts on a Deformed Hilbert Space

P. K. Das¹

Received April 22, 1999

In this paper we observe that the creation operator on a deformed Hilbert space is the product of an ordinary shift and a diagonal operator.

1. INTRODUCTION

We consider a Hilbert space which is spanned by the vectors $\{e_n, n = 0, 1, 2, ...\}$. These vectors are generated by the action of the *creation operator* a^* on the vector e_0 which we call a *vacuum* vector in the Hilbert space. The hermitian conjugate of a^* is the *annihilation operator* a. Together they satisfy the following relations:

$$aa^* = qa^*a + 1$$

$$\langle e_0, e_0 \rangle = 1$$

$$e_n = (a^*)^n e_0$$

$$ae_0 = 0$$
(1)

We call this Hilbert space a *deformed Hilbert space* and denote it by H_q , where q is a deforming parameter ranging over 0 < q < 1. This space was discussed in ref. 1.

Using the relations in (1), we observe the following:

$$a^*e_n = e_{n+1}$$

 $ae_n = [n]e_{n-1}$ (2)

where we take $[n] = (1 - q^n)/(1 - q) = 1 + q + q^2 + \ldots + q^{n-1}$.

¹Physics and Applied Mathematics Unit, Indian Statistical Institute, Calcutta-700035, India; e-mail: daspk@isical.ac.in.

47

0020-7748/00/0100-0047\$18.00/0 © 2000 Plenum Publishing Corporation

To prove $\langle e_m, e_n \rangle = [n]! \delta_{nm}$ we proceed to prove $\langle e_n, e_n \rangle = [n]!$:

$$\|e_{n+1}\|^2 = \langle a^*e_n, e_{n+1} \rangle$$
$$= \langle e_n, ae_{n+1} \rangle$$
$$= \langle e_n, [n+1]e_n \rangle$$
$$= [n+1]\|e_n\|^2$$

Hence, $||e_n||^2 = [n]||e_{n-1}||^2 = [n][n-1] \dots [2][1]||e_0||^2 = [n]!||e_0||^2$. Since by (1), $||e_0||^2 = 1$, we have

$$\langle e_n, e_n \rangle = ||e_n||^2 = [n]!$$

Now,

$$\langle e_n, e_m \rangle = \langle a^{*n} e_0, a^{*m} e_0 \rangle = \langle e_0, a^n a^{*m} e_0 \rangle$$

= 0 if $m > n$ or $m < n$

Thus,

$$\langle e_n, e_m \rangle = [n]! \delta_{nm}$$

Hence, the following can be derived using relations (1):

$$a^*e_n = e_{n+1}$$

$$ae_n = [n]e_{n-1}$$

$$\langle e_n, e_m \rangle = [n]! \delta_{nm}$$
(3)

where $[n]! = [n] \dots [2][1]; [0]! = 1.$

The vectors $\{([n]!)^{-1/2} e_n\}$ form an orthonormal basis and the Hilbert space H_q consists of all vectors $f = \sum_{n=0}^{\infty} f_n e_n$ with complex f_n such that

$$\langle f, f \rangle = \sum_{n=0}^{\infty} |f_n|^2 [n]!$$

is finite.

If $g = \sum_{n=0}^{\infty} g_n e_n$ is also a vector in the space, then

$$\langle f, g \rangle = \sum_{n=0}^{\infty} \overline{f}_n g_n[n]!$$

where the bar denotes the complex conjugate.

In this paper we prove two theorems. The content of the first theorem is that the shift operator is always a bounded operator in H_q . The content of the second theorem is that the shift operator on H_q is unitarily equivalent to the weighted shift on l^2 . Using these theorems, we have shown that the creation operator mentioned above is the product of an ordinary shift and a diagonal operator [2].

2. THEOREMS

Theorem 1. The shift is always an operator in H_q , that is, if $f = \sum_{n=0}^{\infty} f_n e_n = \{f_0, f_1, f_2, \ldots\} \in H_q$, then $Sf = \{0, f_0, f_1, \ldots\} \in H_q$ and as f varies over H_q , ||Sf|| is bounded by a constant multiple of ||f||.

Proof. It is necessary that $||e_{n+1}|| \le \alpha ||e_n||$, where e_n is the vector whose coordinate with index n is 1 and all other coordinates are 0. Since

$$\|e_n\|^2 = \langle e_n, e_n \rangle = [n]! \equiv p_n$$

this condition says that

$$\frac{p_{n+1}}{p_n} = \frac{[n+1]!}{[n]!} = [n+1] = \frac{1-q^{n+1}}{1-q} \to \frac{1}{1-q} \equiv \alpha$$

as $n \to \infty$.

Thus the condition $||e_{n+1}|| \le \alpha ||e_n||$ says that the sequence $\{p_{n+1}/p_n\}$ is bounded with bound 1/(1-q).

This condition is also sufficient. For, if $p_{n+1}/p_n \le 1/(1-q)$ for all *n*, then

$$\|Sf\|^{2} = \sum_{n=1}^{\infty} p_{n} |f_{n-1}|^{2}$$
$$= \sum_{n=1}^{\infty} \frac{p_{n}}{p_{n-1}} p_{n-1} |f_{n-1}|^{2}$$
$$\leq \frac{1}{1-q} \sum_{n=0}^{\infty} p_{n} |f_{n}|^{2}$$
$$= \frac{1}{1-q} \|f\|^{2}$$

Hence

$$\|Sf\| \le \frac{1}{(1-q)^{1/2}} \|f\|$$

Theorem 2. The shift S on H_q is unitarily equivalent to the weighted shift T, with weights $\{\sqrt{[n+1]}\}, \text{ on } l^2$.

Proof. We observe that $\{[n]!\}$ is a sequence of positive numbers with $\{[n + 1]!/[n]!\}$ a bounded sequence.

If
$$f = \{f_0, f_1, f_2, \ldots\} \in H_q$$
, we write
 $Uf = \{1.f_0, \sqrt{[1]!}f_1, \sqrt{[2]!}f_2, \ldots\}$. Then,
 $||Uf||^2 = ||f||^2 = \sum_{n=0}^{\infty} [n]![f_n]^2 < \infty$

Thus, $Uf \in l^2$. Hence, U maps H_q into l^2 linearly.

If $g = \{g_0, g_1, g_2, \ldots\} \in l^2$ and if $f_n = g_n / \sqrt{[n]!}$, then $\sum_{n=0}^{\infty} [n]! |f_n|^2$ = $\sum_{n=0}^{\infty} |g_n|^2 < \infty$. This proves that U maps H_q onto l^2 . Now,

$$USU^{-1}\{g_0, g_1, g_2, \ldots\} = US\left\{\frac{g_0}{\sqrt{[0]!}}, \frac{g_1}{\sqrt{[1]!}}, \frac{g_2}{\sqrt{[2]!}}, \ldots\right\}$$
$$= U\left\{0, \frac{g_0}{\sqrt{[0]!}}, \frac{g_1}{\sqrt{[1]!}}, \frac{g_2}{\sqrt{[2]!}}, \ldots\right\}$$
$$= \left\{0, \sqrt{\frac{[1]!}{[0]!}} g_0, \sqrt{\frac{[2]!}{[1]!}} g_1, \sqrt{\frac{[3]!}{[2]!}} g_2, \ldots\right\}$$
$$= T\{g_0, g_1, g_2, \ldots\}$$

Thus, U transforms S onto T. That is, the transform of the ordinary shift on H_q is a weighted shift on l^2 .

Observation. Because of Theorem 2, a shift S on H_q is the weighted shift T, with weights $\{\sqrt{[n + 1]}\}$ on l^2 ; we have T = UD, where U is an ordinary shift and D is a diagonal operator with diagonals $\{[n + 1]!/[n]!\}$. We see that

$$a^* = UD$$

and

$$ae_n = D^*U^*e_n = D^*e_{n-1} = [n]e_{n-1}$$

We also see that

$$||a|| = ||a^*|| = \sup_n \sqrt{[n+1]} = \sup_n \sqrt{\frac{1-q^{n+1}}{1-q}} = (1-q)^{-1/2}$$

REFERENCES

- Arik, M., and Coon, D. D., Hilbert spaces of analytic functions and generalized coherent states, *JMP* 17, 524–527 (1976).
- 2. Halmos, P. R., A Hilbert Space Problem Book, Springer-Verlag, Berlin (1982).